Thursday, September 12, 2024

Surplus Energy Response

The phrase "too cheap to meter" entered the energy discourse in the 20th century, referring to the potential of nuclear power. Though originally coined to refer to fusion power, the label instead became associated with all nuclear energy. Seventy years later fusion is not here yet, and fission power has been a solid source of baseload power but could never be described as cheap.

The idea of energy too cheap to meter is a compelling one, we just had to wait for an entirely different technology to deliver it: solar photovoltaic. Panels installed on residences and commercial buildings are typically installed "behind the meter," where it directly supplies the energy demand of the building. The proof that solar power is too cheap to meter is that is not, in fact, metered.

Solar deployment has grown incredibly rapidly, faster than the distribution grid would be ready to accept it all. Deployment behind the meter has been essential because the grid in front of the meter hasn't been able to deploy new capacity so rapidly, and solar deployment continues to accelerate. A post by Ben James argues that solar energy can be deployed so inexpensively that using it completely off the grid, for economic activities which can be economical with free energy so long as it can handle being run intermittently only when the sun is shining, is compelling.

  • hydrogen production, via electrolysis of water
  • fertilizer production, producing ammonia via air capture and energy
  • kerosene production, also via air capture
  • ... and other chemical processes made possible by prolific free energy

 

Surplus Energy Response

The electric grid has a notion of Demand Response, when there is heavy demand which stresses available generation — for example, by air conditioning on a hot afternoon. We have reached the point where we also have the opposite situation: we need a surplus response. Many builings now produce substantial excess behind-the-meter power during the day, so much so that the grid cannot absorb it all. We need our buildings to become smarter about putting the excess energy to useful work:

  • pre-heat or pre-cool HVAC, somewhat overshooting the temperature setpoint while energy is free
  • store hotter water, with a smart water system to mix scalding with cold to get the desired water temperature
  • charge electric vehicles for free, with knowledge of when the vehicle is likely to be needed
  • charge up batteries in appliances throughout the building, allowing high peak load appliances to be installed in buildings not originally built for them

Yet we can take it even further. Limitless free energy, albeit at limited time ranges within a day, allows us to make choices we would never have otherwise considered.

  • heat a pool or hot-tub to be ready for impromptu human use at any time during summer months
  • run heat pumps in a sunroom, open to fresh air yet maintained at a comfortable temperature
  • indoor urban hydroponics, pre-engineered gardens which are never too hot nor cold and provide generous fresh produce

In building enthusiasm for the energy transition, providing services which seem impossibly luxurious yet are provided entirely by surplus energy would be a compelling outcome.